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Northwestern US Heat Wave, June 2021

-14°C +19.4°C

2,779 heat-related emergency
department visits in 6 days
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• Exposure to high temperatures can 
cause1,2,3

– Heat stroke
– Heat exhaustion
– Heat syncope
– Heat cramps
– Death

• Annual US heat-related mortality 
may increase by up to 34,0004

Dousset et al. (2010)

1Bouchma et al. (2002); 2Kovats et al. (2008); 3Luber et al. (2008); 4Voorhees et al. (2011)

Heat & Health
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Fourth National Climate Assessment
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Shading: 
Surface Temperature

Goodspeed (2015)

Evapotranspiration:
Air Temperature

woodlandtree.com

20 - 45 °F cooler than 
unshaded

2 - 9 °F cooler than 
unvegetated

Bowler et al., 2012; Yuan et al., 2007
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albedo and surface heat absorption

LBNL
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anthropogenic heat

Atlanta Journal Constitution
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urban canyon

Soltani & Sharifi, 2017



Tunza Eco Generation

The Urban Heat Island Effect



Hoffman et al., 2020, New York Times
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Hoffman et al., 2020, New York Times



Exposure Sensitivity
Adaptive 
Capacity Vulnerability

Defining Vulnerability



Common Vulnerability Indicators

Exposure Sensitivity
Adaptive 
Capacity Vulnerability

Hot/heatwave days
Consecutive hot days
Min/Mean/Max temp.
Land surface temp.
Vegetation
Urban density
Land cover
Land use
Population density

Old age
Infants, young age
Sex
Pre-existing illness
-Diabetes
-Cardiovascular
-Renal

AC access
Rental / homeowner
Unhoused
Education
Ethnicity
Language
Foreign-born
Cognitive impairment
Cooling / community center
Living alone
Working outdoors



Targeting Interventions

Sensitivity / Adaptive Capacity
• Shorter-term, emergency response
• Community-based adaptations
• Cooling centers, phone trees

Exposure
• Longer-term, heat mitigation response
• Tree-planting priority
• Cool materials

Vulnerability
• All-of-the-above response
• Highest priority, pilot projects here
• Identify local stakeholders / champions

Exposure

Sensitivity

Vulnerability



Longitudinal Heat Monitoring:
the Georgia Tech Climate Network

• Goal
– Analyze thermal environments of Georgia 

Tech’s microclimates related to the Urban 
Heat Island

– Inform planning and design decisions to 
enhance thermal comfort for pedestrians

• 44 total sites
– 33 across campus microclimates
– 12 deployed in Atlanta metro area





7 Days

# Hot Days Above 91°F (Summer 2017)

53 Days



Mallen et al., 2020





Daily Maximum Temperature Daily Minimum Temperature

Range: 5°F Range: 13°F



cool materials scenario

assumes all building roofs,
roadways, and parking lots meet

a minimum standard for 
reflectivity



Cool Materials Scenario Difference from Current Conditions

Cool materials: 2-3°F cooler on average



greening scenario
assumes 20-50% higher canopy

coverage over roadways

Zoning Class Green Cover 
Minimum

Single Family Residential 80%
Multifamily Residential 70%
Commercial 50%
Industrial 40%
Public/Institutional 60%
Parkland 90%
Farmland 100%
Vacant 100%



Greening Scenario Difference from Current Conditions

Street trees: 1-2°F cooler on average
Note: Greening 1.2 times more effective than cool materials per unit area



combined strategies scenario

+



Combined Scenario Difference from Current Conditions

Combined: Over 3°F cooler on average



Distribution of Heat-Related Mortality



Avoided Mortality from Combined Scenario (21.4%)



Louisville Heat Management: 
Green Heart Project



Louisville Heat Management: 
Cool502



Rising Power Outages

Systems Average Interruption 
Duration Index (SAIDI)

USEIA, 2019
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• Heat-related infrastructure 
damages

• Grid stress from high 
demand

• Preventative outages 
(wildfires)

Blackout Causes









Heat Index: Pre-Blackout

Atlanta Interior Heat Risk

Stone et al. (2021b)



Heat Index: Blackout

Atlanta Interior Heat Risk

Stone et al. (2021b)



Curriero et al. (2002)
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UHI Penalty:
Difference in interior
temperatures between
warmest and coolest areas
of city within housing type

Housing Penalty:
Difference in interior
temperatures between
warmest and coolest
building type for each city

Stone et al., 2021







Personal Adaptations

Personal Adaptations



Cambridgema.gov

Community-Driven Climate Adaptation Planning



BASE SCENARIO
SUMMER (AvgT)



ALBEDO SCENARIO
SUMMER (AvgT)



ST TREE SCENARIO
SUMMER (AvgT)

Street trees are also effective in 
reducing temperatures along large 
roadways and in neighborhood cores 
lacking significant tree cover.



T30 SCENARIO
SUMMER (AvgT)

Increasing neighborhood tree cover to 
a minimum of 30%, along streets and 
all areas outside of roofing and water, 
has the greatest effect in 
neighborhoods with low canopy. 



T50 SCENARIO
SUMMER (AvgT)

A goal of 50% tree cover for all 
neighborhoods has a significant and 
widespread cooling effect. 



COMBINED SCENARIO
SUMMER (AvgT)

The all combined scenario, combining 
the effects of 50% neighborhood tree 
cover and cool materials, reduces 
neighborhood average temperatures 
by between 0.5 and 4 ○F. 



Urban climate models enable scenario assessment of specific heat management strategies

BASE SCENARIO COMBINED SCENARIO



Neighborhood Small Street 
Trees

Large Street 
Trees

Cool Roofing 
(Albedo, 000s sq 

ft)

Cool Paving 
(Albedo, 000s, sq 

ft)

Agassiz 490 90 2,509 2,670

Area 2/MIT 1,259 231 3,102 4,763

Cambridge Highlands 631 116 2,446 5,623

Cambridgeport 877 161 4,028 4,226

East Cambridge 2,732 502 5,761 9,208

Mid-Cambridge 790 145 3,878 4,169

Neighborhood Nine 1,317 242 4,949 6,996

North Cambridge 2,213 407 5,741 9,116

Riverside 1,074 197 3,505 3,915

Strawberry Hill 487 89 1,069 2,049

The Port 1,149 211 4,060 4,432

Wellington-Harrington 574 105 2,206 3,045

West Cambridge 1,051 193 4,616 7,001

Total 14,646 2,690 47,871 67,214

Urban climate models enable scenario assessment of specific heat management strategies

Subsequent Analyses
• Stormwater management
• Air quality
• Energy savings
• Carbon sequestration
• Property values
• Health impact assessments
• Economic modeling
• Housing policy
• Community development



Urban climate models enable population heat vulnerability mapping and analysis
   h impact assessment with air 

 ng illustrates the limitations of using 
  one to target heat adaptation 

   nd that the West Cambridge 
 h exhibits among the lowest air 

   City, also exhibits one of the highest 
    mortality. West Cambridge has an 
    mortality due to the 

 gher population of elderly than 
   idge, a characteristic of population 

  red by a health impact assessment.

Heat-Related Mortality
by Block Group (per 100,000)

Public Health Impact

BASE SCENARIO



Public Health Impact



Access to Air Conditioning





Access to Air Conditioning



Overall Heat Risk Assessment



Policy innovation: green area ratios
Berger Partnership PS, 2008



Minimum Green Factor Score by Zone

City of Seattle (2014)



Urban tree innovations: Silva cells



deeproot.com



deeproot.com



Recommendations for Policy

1. Prepare now
Municipalities should prepare now for concurrent heatwave and power outage events. 
Use both passive (cool roof and tree canopy) and active (personal adaptation) 
strategies

2. Housing matters
Identify high-risk populations by housing type for most effective interventions

3. No “one-size-fits-all” solutions
Heat mitigation strategies must be tailored to the local climate, as effectiveness may vary

4. Look beyond “hotspots”
Implement strategies in warm and cool areas of a city, not just the “hotspots”



Thank you

esmallen@gatech.edu
urbanclimate.gatech.edu
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