Georgia Institute of Technology

CORE MPO Climate Change and Adaptation Workshop

Climate Risk Matrix and Potential Adaptation Strategies

Table 1 - Illustrative Listing of Climate Impacts and Adaptation Strategies

Impact Category	Adaptation Strategies				
Precipitation: accelerated asset deterioration	 Conduct early vulnerability assessments Give greater weight to potential for ground subsidence in design of infrastructure Accelerate replacement cycles 				
	 Shift to materials with greater resistance to moisture and heat/cold cycles Incorporate design features such as increased pavement sloping to improve resistance to precipitation 				
Precipitation and sea level rise: Increased incidence of flooding events	 Re-site or floodproof infrastructure Greater protections and construction limitations for floodplains and coastal areas. 				
Precipitation: Water scarcity and loss of winter snowpack	Shift to less water-intensive construction methods Shift ROW plantings to drought-resistant species and designs that reduce runoff				
Precipitation: Increased incidence of wildfires	 Vulnerability assessments incorporated in infrastructure location decisions Use of fire-resistant construction materials and landscaping 				
Precipitation: Shift in ranges of endangered species	Keep abreast of ecological studies on a regional basis to detect observed shifts in habitat.				
Temperature: Arctic asset and foundation deterioration	 Install insulation or cooling systems in roadbeds to prevent thawing Relocate facilities to more stable ground Remove permafrost before construction for new facilities 				
Temperature: Increase in the frequency and severity of heat events	 Plan for more frequent maintenance Use of heat-resistant roadway materials Greater use of expansion joints in roadways, bridges, and rail guideways. 				
Temperature: Reduction in frequency of severe cold	Capitalize through the extension of construction and maintenance season				
Sea level rise: Inundation of infrastructure	 Relocate assets Develop redundancy in travel routes near the shoreline Disinvest in infrastructure too costly to protect Elevate or hardscape the most critical infrastructure Expand drainage and pumping capacity 				
Sea level rise: Storm surges	Protective designs] Relocation of facilities				
More intense weather events: Damage to assets	 Retrofit assets early for greater resistance to extreme weather Incorporate storm resistant features into future designs Minimize water-impervious surfaces in designs and design infrastructure to slow run-off from heavy rain events 				
More intense weather events: Increased frequency of road traffic disruption, including interruption of emergency routes	 More stringent design, operations standards Develop redundancy in travel routes near the shoreline Elevate or hardscape the most critical infrastructure Create Transportation Management Centers, improve monitoring of conditions and real-time information made available to the public Greater emphasis on emergency evacuation procedures, making them routine 				
Increased planning, construction, or operating costs due to climate change legislation	Early adoption of energy-saving measures to minimize the impacts of rising energy costs				
Organizational adjustments (replace outmoded procedures, acquire new competencies)	Conduct early reevaluation of procedures in advance of new requirements				

Potential Climate Change Impacts Risk Matrix

Probability of Occurrence

Cost of Consequence

Potential Climate Impacts	Adaptation Strategies					
Potential Climate Impacts	Short-term	Long-term				
		•				
	,					
·						
	:					
·						
,						
·						
· .						
		,				
	•	<u>'</u>				
		,				

٠..

Savannah/Chatham County Climate Projections

Table 2 - Savannah Area Summer Temperature and Precipitation Projections

Savannah Region (Chatham County) Summer (June, July, & August)							
Temperature & Precipitation Projections							
A1FI Emissions Scenario Ensemble "High Emissions"							
Time Horizon	1981-	2010-	2040-	2070-			
	2010	2039	2069	2099			
Mean Temp °F	81.3	83.3	86.4	88.7			
. Mean Days Over 90°F	56.3	90.8	92.0	92.0			
Mean Max Consecutive Days Over 90°F	N/A	66.5	91.0	91.0			
Mean Days Over 100°F	1.8	10.20	37.80	70.8			
Mean Max Consecutive Days Over 100°F	N/A	3.25	6.80	33.8			
Mean Max Daily (cumulative 24 hr.) precip (in.)	5.41	6.35	7.26	6.64			
Mean Days with 1" or more precip	5.4	18.0	22.1	25.1			
A2 Emissions Scenario Ensemble "Moderate Emissions"							
Time Horizon	81.3	83.2	85.2	87.1			
Mean Temp °F	56.3	91.9	92.0	92.0			
Mean Days Over 90°F	N/A	89	91.0	91.0			
Mean Max Consecutive Days Over 90°F	1.8	27.30	57.2	85.0			
Mean Days Over 100°F	N/A	5.60	17.2	32.4			
Mean Max Consecutive Days Over 100°F	5.41	6.43	6.84	6.64			
Mean Max Daily (cumulative 24 hr.) precip (in.)	- 5.4	33.6	36.7	35.60			
Mean Days with 1" or more precip	81.3	83.2	85.2	87.1			
B1 Emissions Scenario Ensemb	le "Low En	issions"					
Time Horizon	81.3	83.3	84.0	84.6			
Mean Temp °F	56.3	92.0	92.0	92.0			
Mean Days Over 90°F	N/A	91.0	91.0	91.0			
Mean Max Consecutive Days Over 90°F	1.8	30.0	39.2	54.3			
Mean Days Over 100°F	N/A	9.50	8.00	22.00			
Mean Max Consecutive Days Over 100°F	5.41	7.29	6.27	7.28			
Mean Max Daily (cumulative 24 hr.) precip (in.)	5.4	33.9	35.1	35.70			
Mean Days with 1" or more precip	81.3	83.3	84.0	84.6			

Table 3 – Savannah Area Winter Temperature & Precipitation Projections

Savannah Region (Chatham County) Winte	=		& Februar	y)			
Temperature & Precipitation Projections A1FI Emissions Scenario Ensemble "High Emissions"							
Time Horizon	1981-	2010-	2040-	2070-			
	2010	2039	2069	2099			
Mean Temp °F	51.4	52.3	54.2	56.2			
Mean Freezing Days (Low <= 32°F)	19.5	52.1	41.2	30.2			
Mean Max Consecutive Freezing Days	N/A	18.5	2.16	9.6			
Mean Max Daily (cumulative 24 hr.) precip (in.)	3.30	3.17	3.14	3.08			
Mean Days with 1" or more precip	. 2.6	9.41	7.97	7.79			
A2 Emissions Scenario Ensemble "Moderate Emissions"							
Time Horizon	1981-	2010-	2040-	2070-			
	2010	2039	2069	2099			
Mean Temp °F	51.4	52.4	53.8	55.7			
Mean Freezing Days (Low <= 32°F)	19.5	76.0	67.1	55.0			
Mean Max Consecutive Freezing Days	N/A	19.6	19.3	11.5			
Mean Max Daily (cumulative 24 hr.) precip (in.)	3.30	3.78	3.82	3.66			
Mean Days with 1" or more precip	2.6	17.5	19.6	21			
B1 Emissions Scenario Ensem	ble "Low E	missions"					
Time Horizon	1981-	2010-	2040-	2070-			
	2010	2039	2069	2099			
Mean Temp °F	51.4	52.2	53.0	53.5			
Mean Freezing Days (Low <= 32°F)	19.5	76.5	72.7	69.9			
Mean Max Consecutive Freezing Days	N/A	16.7	39.8	15.7			
Mean Max Daily (cumulative 24 hr.) precip (in.)	3.30	3.37	3.49	3.70			
Mean Days with 1" or more precip	2.6	20.4	20.0	20.4			