

Climate Change Risks and Adaptation Strategies in Chatham County/Savannah

John Patrick O'Har, E.I.T.

Ph.D. Candidate Email: OHar@gatech.edu School of Civil and Environmental Engineering Georgia Institute of Technology

Michael Meyer, Ph.D., P.E.

Transport Studio, LLC Email: mm39prof@gmail.com

Acknowledgments

Transport Studio, LLC

Dwight David Eisenhower Transportation Fellowship Program

Overview

- Climate Models
- Climate Impacts Statewide
 - Temperature Projections
- Climate Impacts in Chatham County
 - Temperature and Precipitation Projections
 - Surge and Sea Level Rise
- Climate Risk Matrix
- Identification of Adaptation Strategies

Climate Models

- Global Atmosphere-Ocean General Circulation Models (AOGCMs) [1]
 - Based upon accepted physical principles
 - Provide credible estimates of future climate change
- Global resolution not actionable on regional and local scales
- Earth System Models of Intermediate Complexity (EMIC) often used with AOCGMs to assess uncertainties associated with climate model parameters [1]

Emissions Scenarios

- IPCC Special Report on Emissions Scenarios (SRES) contains 6 scenario groups
 - Predict future GHG emissions based on demographic, social, economic, technological, and environmental developments [2]
- 3 used in this research
 - A1FI "Higher" emissions
 - A2 "Moderate" emissions
 - B1 "Low" emissions

Downscaled Climate Projections

- USGS Southeast Regional Assessment Project (SERAP) best state-of-practice readily-available downscaled projections [3]
 - <u>http://cida.usgs.gov/climate/gdp</u>
- Statistical downscaling techniques produce model results at a higher spatial resolution

- 1/8° or approximately 7.5 miles (12 km)

 Baseline data (1981 to 2010) from NOAA's National Climatic Data Center and records from the National Weather Service [4]

Georgia Statewide Baselines

GA Winter 1981 to 2010 Mean Temp (°F) Baseline

GA Summer 1981 to 2010 Mean Temp (°F) Baseline

2040 to 2069 GA Higher Emissions Projections

GA Winter 2040 to 2069 Temp (°F) Difference

GA Summer 2040 to 2069 Temp (°F) Difference

2070 to 2099 GA Higher Emissions Projections

GA Winter 2070 to 2099 Temp (°F) Difference

GA Summer 2070 to 2099 Temp (°F) Difference

Illustrative Impacts in Chatham County

- Sea Level Rise
- Coastal Storms and Surge
- Increased Wind Velocities
- Increased Temperatures
- Increased Frequency/Intensity of Precipitation
- Increased Extreme Temperatures
 - But Decreased Extreme Cold Over Time

Sea Level Rise

- Savannah featured in the press
 - New York Times [5]
 - NPR [6]
- Inundation due to tides already a concern

Sea Level Rising Much Faster Than U.N. Projections

by EYDER PERALTA November 28, 2012 6:52 PM

> "It singled out the California cities of Los Angeles and San Diego on the Pacific coast and Jacksonville, Florida, and Savannah, Georgia on the Atlantic, as the most vulnerable to historic flooding due to sea-level rise.

> > Source: NPR

What Could Disappear

Maps show coastal and low-lying areas that would be permanently flooded, without engineered protection, in three levels of higher seas. Percentages are the portion of dry, habitable land within the city limits of places listed that would be permanently submerged.

As seas rise, planning starts

This is what Burnside Island could look like with a 1 mete in sea level. (Image provided by Architecture 2030)

Source: savannahnow.com

By Mary La Sea level ri 50-100 sq an area a Tybee Islar century, a But the stu Environme Georgia is i

because G

Today's waterways

Back | Next

Land submerged by rising oceans

Select sea level rise over current level:

- 25 feet Potential level in coming centuries, based on historical climate data.
- 12 feet. Potential level in about 2300 if nations make only moderate pollution cuts
- 5 feet. Probable level in about 100 to 300 years
 - 0 feet Today's sea levels and land area

Notes on sea level estimates

Savannah, Ga. 8% flooded

Widespread flooding of estuaries along the Atlantic coast

Source: NY Times

April 2, 2013

MPC – Savannah, GA

SLR MLLW & Transpo Infra

Storm Surge/Hurricane Categories & Transpo Infra

MPC - Savannah, GA

5.94 ft SLR MLLW & Bus Routes and Stops

14.34 ft SLR MLLW & Bus Routes and Stops

Storm Surge and Bus Routes and Stops

MPC – Savannah, GA

Temperature & Precipitation Projections for Chatham County

Savannah (Chatham County) Summer (June, July, & August) Temperature & Precipitation Projections					
A1FI Emissions Scenario	Ensemble "High	Emissions"			
Time Horizon	1981-2010	2010-2039	2040-2069	2070-2099	
Mean Temp °F	81.3	83.3	86.4	88.7	
Mean Days Over 90°F	56.3	90.8	92.0	92.0	
Mean Max Consecutive Days Over 90°F	N/A	66.5	91.0	91.0	
Mean Days Over 100°F	1.8	10.20	37.80	70.8	
Mean Max Consecutive Days Over 100°F	N/A	3.25	6.80	33.8	
Mean Max Daily (cumulative 24 hr.) precip (in.)	5.41	6.35	7.26	6.64	
Mean Days with 1" or more precip	5.4	18.0	22.1	25.1	
A2 Emissions Scenario Ensemble "Moderate Emissions"					
Time Horizon	81.3	83.2	85.2	87.1	
Mean Temp °F	56.3	91.9	92.0	92.0	
Mean Days Over 90°F	N/A	89	91.0	91.0	
Mean Max Consecutive Days Over 90°F	1.8	27.30	57.2	85.0	
Mean Days Over 100°F	N/A	5.60	17.2	32.4	
Mean Max Consecutive Days Over 100°F	5.41	6.43	6.84	6.64	
Mean Max Daily (cumulative 24 hr.) precip (in.)	5.4	33.6	36.7	35.60	
Mean Days with 1" or more precip	81.3	83.2	85.2	87.1	
B1 Emissions Scenario Ensemble "Low Emissions"					
Time Horizon	81.3	83.3	84.0	84.6	
Mean Temp °F	56.3	92.0	92.0	92.0	
Mean Days Over 90°F	N/A	91.0	91.0	91.0	
Mean Max Consecutive Days Over 90°F	1.8	30.0	39.2	54.3	
Mean Days Over 100°F	N/A	9.50	8.00	22.00	
Mean Max Consecutive Days Over 100°F	5.41	7.29	6.27	7.28	
Mean Max Daily (cumulative 24 hr.) precip (in.)	5.4	33.9	35.1	35.70	
Mean Days with 1" or more precip	81.3	83.3	84.0	84.6	

Savannah Region (Chatham County) Winter (December, January, & February)
Temperature & Precipitation Projections
A1FI Emissions Scenario Ensemble "High Emissions"

	•			
Time Horizon	1981-2010	2010-2039	2040-2069	2070- 2099
Mean Temp °F	51.4	52.3	54.2	56.2
Mean Freezing Days (Low <= 32°F)	19.5	52.1	41.2	30.2
Mean Max Consecutive Freezing Days	N/A	18.5	2.16	9.6
Mean Max Daily (cumulative 24 hr.) precip (in.)	3.30	3.17	3.14	3.08
Mean Days with 1" or more precip	2.6	9.41	7.97	7.79
A2 Emissions Scenario Ense	mble "Modera	ate Emissions"		
Time Horizon	1981-2010	2010-2039	2040-2069	2070- 2099
Mean Temp °F	51.4	52.4	53.8	55.7
Mean Freezing Days (Low <= 32°F)	19.5	76.0	67.1	55.0
Mean Max Consecutive Freezing Days	N/A	19.6	19.3	11.5
Mean Max Daily (cumulative 24 hr.) precip (in.)	3.30	3.78	3.82	3.66
Mean Days with 1" or more precip	2.6	17.5	19.6	21
B1 Emissions Scenario Er	semble "Low	Emissions"		
Time Horizon	1981-2010	2010-2039	2040-2069	2070- 2099
Mean Temp °F	51.4	52.2	53.0	53.5
Mean Freezing Days (Low <= 32°F)	19.5	76.5	72.7	69.9
Mean Max Consecutive Freezing Days	N/A	16.7	39.8	15.7
Mean Max Daily (cumulative 24 hr.) precip (in.)	3.30	3.37	3.49	3.70
Mean Days with 1" or more precip	2.6	20.4	20.0	20.4

Illustrative Listing of Climate Impacts

Impact Category	Adaptation Strategies		
Precipitation: accelerated	Conduct early vulnerability assessments		
asset deterioration	 Give greater weight to potential for ground subsidence in design of infrastructure 		
	Accelerate replacement cycles		
	 Shift to materials with greater resistance to moisture and heat/cold cycles 		
	 Incorporate design features such as increased pavement sloping to improve resistance to precipitation 		
Precipitation and sea	Re-site or floodproof infrastructure		
level rise: Increased	Greater protections and construction limitations for floodplains		
incidence of flooding	and coastal areas.		
events			
Precipitation: Water	 Shift to less water-intensive construction methods 		
scarcity and loss of winter	 Shift ROW plantings to drought-resistant species and designs that 		
snowpack	reduce runoff		
Precipitation: Increased	 Vulnerability assessments incorporated in infrastructure location 		
incidence of wildfires	decisions		
	 Use of fire-resistant construction materials and landscaping 		
Precipitation: Shift in	Keep abreast of ecological studies on a regional basis to detect		
ranges of endangered	observed shifts in habitat.		
species			
Temperature: Arctic asset	 Install insulation or cooling systems in roadbeds to prevent 		
and foundation	thawing		
deterioration	 Relocate facilities to more stable ground 		
	 Remove permafrost before construction for new facilities 		
Temperature: Increase in	Plan for more frequent maintenance		
the frequency and	Use of heat-resistant roadway materials		
severity of heat events	 Greater use of expansion joints in roadways, bridges, and rail 		
	guideways.		
Temperature: Reduction	Capitalize through the extension of construction and maintenance		
in frequency of severe	season		
cold			

Impact Category	Adaptation Strategys	
Sea level rise: Inundation of	Relocate assets	
infrastructure	Develop redundancy in travel routes near the shoreline	
	 Disinvest in infrastructure too costly to protect 	
	 Elevate or hardscape the most critical infrastructure 	
	 Expand drainage and pumping capacity 	
Sea level rise: Storm surges	Protective designs]	
	Relocation of facilities	
More intense weather	Retrofit assets early for greater resistance to extreme weather	
events: Damage to assets	 Incorporate storm resistant features into future designs 	
	 Minimize water-impervious surfaces in designs and design 	
	infrastructure to slow run-off from heavy rain events	
More intense weather	 More stringent design, operations standards 	
events: Increased frequency	 Develop redundancy in travel routes near the shoreline 	
of road traffic disruption,	 Elevate or hardscape the most critical infrastructure 	
including interruption of	 Create Transportation Management Centers, improve 	
emergency routes	monitoring of conditions and real-time information made	
	available to the public	
	 Greater emphasis on emergency evacuation procedures, 	
	making them routine	
Increased planning,	• Early adoption of energy-saving measures to minimize the	
construction, or operating	impacts of rising energy costs	
costs due to climate change		
legislation		
Organizational adjustments	Conduct early reevaluation of procedures in advance of new	
(replace outmoded	requirements	
procedures, acquire new		
competencies)		

Climate Impacts Risk Matrix

Probability of Occurrence

GDOT Workshop Examples

Probability of

Occurrence

High	 Decreased frequency of severe cold Increased risk of landslides 	 Increases in temperature – daily mean and extremes 	 Sea Level Rise
Medium		 Shift in ranges of endangered species Increased intensity of droughts Increased frequency and intensity of precipitation 	 Increased frequency and intensity of tropical storms
Low			 Increased river flooding Increased wind velocities
	Low	Medium Cost of Consequence	High

Potential Climate	Adaptation Strategies		
Impacts	Short-term	Long-term	
• Sea Level Rise	 Retrofit existing bridges 	• Elevate new	
 Increased 	with deeper foundations	bridges and build	
frequency and	and shear keys	with deeper	
severity of	Improve	foundations	
coastal storms	drainage/increase		
	culvert capacity		
 Increased 	 Utilize materials with 	Research materials	
Temperatures	greater thermal capacity	that can better	
• Wider		withstand heat	
temperature			
ranges			
 Increased Wind 			
Velocities			
• Shift in			
Endangered			
Species			
• Decrease in			
frequency of			
extreme cold			

References

[1] Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., et al. (2007). Climate Models and Their Evaluation. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, et al. (Eds.), *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*. New York, NY: Cambridge University Press.

[2] Nakicenovic, N., Davidson, O., Davis, G., Grubler, A., Kram, T., Lebre La Rovere, E., Metz, B., et al. (2000). *Summary for Policymakers Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change*. New York, NY.

[3] Dalton, M. S., & Jones, S. A. (2010). Southeast Regional Assessment Project for the National Climate Change and Wildlife Science Center, U.S. Geological Survey. Science. Reston, Virginia.

[4] NOAA. (2013a). Climate Data Online: Text & Map Search. *National Climatic Data Center*. Retrieved March 5, 2013, from <u>http://www.ncdc.noaa.gov/cdo-web/</u>

NOAA. (2013b). National Weather Service Forecast Office: Peachtree City, GA. *NOWData - NOAA Online Weather Data*. Retrieved March 8, 2013, from http://www.nws.noaa.gov/climate/xmacis.php?wfo=ffc

[5] The New York Times. (2012). "What Could Disappear." online ed. 24 November 2012. http://www.nytimes.com/interactive/2012/11/24/opinion/sunday/what-could-disappear.html

[6] Peralta, Eyder. (2012). "Sea Level Rising Much Faster Than U.N. Projections". National Public Radio. 28 November 2012. <u>http://www.npr.org/blogs/thetwo-way/2012/11/28/166116237/sea-level-rising-much-faster-than-u-n-projections</u>